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Jane Wang is a research scientist at DeepMind on the neuroscience team,
working on meta-reinforcement learning and neuroscience-inspired artificial
agents. Her background is in physics, complex systems, and computational
and cognitive neuroscience.

Kevin Miller is a research scientist on the Neuroscience Team at DeepMind
and a postdoc at University College London. He is currently working on
understanding structured reinforcement learning in mice and machines.

Adam Marblestone is a Schmidt Futures innovation fellow, was previously a
research scientist at DeepMind, and earlier did a PhD in BioPhysics and
worked at a brain computer interface company.




Intended audience

e Those with some background in ML

e Those with interest in how insights from neuroscience can
apply to Al research

e No background in neuroscience required



Schedule

1. Introduction / background (15 min)

2. Cognitive neuroscience (30 min)
a. Q/A (10 min)

3. Learning circuits and mechanistic neuroscience (30 min)
a. Q/A (10 min)

4. Recent advancements at the intersection (25 min)

5. General discussion (30 min), sli.do questions



Please submit questions at sli.do here

Be sure to address your question to one of the speakers if it's
regarding a specific section of the tutorial
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Introduction

Jane Wang




Why does neuroscience matter for Al?

“The brain’s the only known example of truly general intelligence.”

“Neuroscience discoveries can inspire new architectures, models, or cost
functions.”

“Humans have the amazing ability to ____, and we'd like our agents to have that
ability as well.”
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Lee et al. (2011). "Unsupervised Learning of Hierarchical Representations
with Convolutional Deep Belief Networks."” 54 (10), Comm. ACM
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Airplanes don’t fly the way birds
do, so what can neuroscience
possibly contribute to Al?




From Stanford, https://news.stanford.edu/2016/12/05/birds-flying-laser-light-reveal-faults-flight-research/

Gutierrez et al. Bioinspiration & Biomemetics. 2016.
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https://www.purdue.edu/newsroom/releases/2019/Q2/hummingbird-robot-uses-ai-to-soon-go-where-drones-cant.html
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The agent is already “fully formed”,
both through previous experience,
and evolutionarily programmed
instinctual responses.

Goal is then to try to infer already
existing behavioral patterns, and to
match these to neural signatures.



The agent is already “fully formed”,
both through previous experience,
and evolutionarily programmed
instinctual responses.

Goal is then to try to infer already
existing behavioral patterns, and to
match these to neural signatures.

Architecture, learning rule,
objective function, tasks

2 -

The training process is specified first,
with the goal of creating an agent

e Architecture, learning rule,
Objective function (Richards et al 2019, Nat

Neuro Rev; Marblestone et al 2016, Front. Comp. Neurosci.)

e Task/environmental demands,
which constrains behavior and
determines the formation of
priors
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Another perspective: neuroscience by scale
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Outline

1. Cognitive neuroscience

E 2. Learning circuits and mechanistic neuroscience

3. Recent advancements at the intersection




