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DNNs as models for neuroscience - perception
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Using goal-driven deep learning models to understand sensory cortex. Yamins & DiCarlo, 2016 Nature Neuroscience
Performance-optimized hierarchical models predict neural responses in higher visual cortex. Yamins et al, 2014 PNAS
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DNNs as models for neuroscience - perception
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DNNs as models for neuroscience - decision-making

e Perceptual-based decision-making
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Context-dependent computation by recurrent dynamics in prefrontal cortex. Mante et al. 2013 Nature
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DNNs as models for neuroscience - decision-making

e Perceptual-based decision-making ANIMAL
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Context-dependent computation by recurrent dynamics in prefrontal cortex. Mante et al. 2013 Nature



DNNs as models for neuroscience - decision-making

e Perceptual-based decision-making
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DNNs as models for neuroscience - decision-making

e \Value-based decision-making
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cognitive and value-based tasks. Song et al. 2017 elLife
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DNNs as models for neuroscience - decision-making

e \Value-based decision-making
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DNNs as models for neuroscience - many tasks
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DNNs as models for neuroscience - human behavior

Train RNN to simultaneously predict behavior and neural response data (fMRI)
Use this model to assess the impact of reward on future actions, pinpointing

specific brain regions involved in decision-making in this task
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Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models.
Dezfouli et al. 2018 NeurlPS




Deep meta-reinforcement learning

e Use an LSTM to meta-learn a reinforcement learning algorithm
e Train on a distribution of related tasks
e |earns to quickly adapts to new tasks

a Vv, 4 S
t t l Training signal—p- \
R -
| ( . I Distribution of
I [ Observation, | environments
| reward |
G @ N |
I Action—» I
5 : , I
| | Last action
(DA) 7 1
| \ ———————— » -_— ,
O g Iy \\ ______ ITeTOE _>_ -

Outer loop

Prefrontal cortex as a meta-reinforcement learning system. Wang et al, 2018, Nat Neurosci




Deep meta-reinforcement learning

e Use an LSTM to meta-learn a reinforcement learning algorithm
e Train on a distribution of related tasks
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Prefrontal cortex as a meta-reinforcement learning system. Wang et al, 2018, Nat Neurosci




Articles

nature .
https://doi.org /10.1038/441593-018-0147-8 neur0801ence

Prefrontal cortex as a meta-reinforcement
learning system

Jane X. Wang©'5, Zeb Kurth-Nelson'?5, Dharshan Kumaran'?, Dhruva Tirumala', Hubert Soyer’,
Joel Z. Leibo', Demis Hassabis'* and Matthew Botvinick ©#*

Over the past 20 years, neuroscience research on reward-based learning has converged on a canonical model, under which the
neurotransmitter dopamine ‘stamps in' associations between situations, actions and rewards by modulating the strength of
synaptic connections between neurons. However, a growing number of recent findings have placed this standard model under

Fixation
(1-3s) Saccade Target Saccade Outcome

oag «Etatonl --- True reward rate —— Estimated reward rate
(1-25)  Fixation ,

Block 1 | Block 2
Fixation - ‘ |
1 O
< Rewarded |Unrewarded
|
- SIS
I
Unrewarded | Rewarded

0519 ey release
Outcome

Prefrontal cortex as a meta-reinforcement learning system. Wang et al, 2018, Nat Neurosci




Dopamine reward prediction errors (RPEs) reflect indirect, inferred value
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A pallidus-habenula-dopamine pathway signals inferred stimulus values. Bromberg-Martin et al., J Neurophys, 2010



Dopamine reward prediction errors (RPEs) reflect indirect, inferred value
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Dopamine reward prediction errors (RPEs) reflect indirect, inferred value
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Reward prediction error signal reflects model-based inference
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Distributional reinforcement learning

Classic TD learning
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A distributional code for value in dopamine-based reinforcement learning. Dabney et al. 2020 Nature




Distributional reinforcement learning

Classic TD learning
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Moving towards biological realism
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Deep neural networks

% Discrete time
% Continuous activations

%  “Supervised” / global loss
signal

Biological neural networks
% Continuous time
%  Spiking, stochastic
% Associative (Hebbian) / local
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Moving towards biological realism

Deep neural networks
% Discrete time
% Continuous activations
%  “Supervised” / global loss
signal
%  Backpropagation for

optimization

Biological neural networks
%  Continuous time
%  Spiking, stochastic
% Associative (Hebbian) / local
learning
%*  No backpropagation!



Moving towards biological realism
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Backpropagation and the brain. Lillicrap et al. 2020 Nature Rev Neurosci




Moving towards biological realism
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Moving towards biological realism

Biologically plausible learning in recurrent neural networks
reproduces neural dynamics observed during cognitive tasks

G 00a

Thomas Miconi
The Neurosciences Institute, United States

e Biologically plausible implementation of (continuous time) RNN trained to

perform multiple cognitive tasks
o Reward-modulated Hebbian variant of node perturbation
o No backprop required

Biologically realistic implementation of RNNs. Miconi. 2017, eLife



Moving towards biological realism

Biologically plausible learning in recurrent neural networks
reproduces neural dynamics observed during cognitive tasks
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Thomas Miconi
The Neurosciences Institute, United States
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Moving towards biological realism

e Learning with spiking neural networks o
e Sequential MNIST task
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Long short-term memory and learning-to-learn in networks of spiking neurons. Bellec et al. 2018 NeurlPS




Moving towards biological realism

e |earning with spiking neural networks o
e Sequential MNIST task
Performance comparison LSNN solving sequential MNIST
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Long short-term memory and learning-to-learn in networks of spiking neurons. Bellec et al. 2018 NeurlPS




Moving towards biological realism

e |earning to learn from reward with spiking neural networks
e Morris water maze task
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Long short-term memory and learning-to-learn in networks of spiking neurons. Bellec et al. 2018 NeurlPS
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Why move toward biological realism?

e TJo get out of local optimums

e To try to emulate what the brain and biology
does best: solve problems under uncertainty,
finite computation, decomposable situations,
and structured environments

e To be able to solve more real-world problems

e To get additional clues about what problems
biology is trying to solve




Artificial models of embodied control

Deep neuroethology of a virtual rodent. Merel et al. 2020 ICLR




Artificial models of embodied control
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Deep neuroethology of a virtual rodent. Merel et al. 2020 ICLR
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http://www.youtube.com/watch?v=vBIV1qJpJK8

Understanding DNNs the way we understand brains




Understanding DNNs the way we understand brains

1. “Visualizing and understanding atari agents.” Greydanus et al, 2018 ICML

2. "Analyzing biological and artificial neural networks: challenges with opportunities for synergy?” Barrett
et al. 2019 Curr Opin Neurobiol

3. “On the importance of single directions for generalization.” Morcos et al, 2018 ICLR

4. "Svcca: Singular vector canonical correlation analysis for deep learning dynamics and interpretability.”
Raghu et al, 2017 NeurlPS

5.  “Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution.”
Gupta et al. 2020 ICLR

6. "Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks.”
Sussillo et al, 2013

7. “Universality and individuality in neural dynamics across large populations of recurrent networks.”
Maheswaranathan et al, 2019 NeurIPS
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Thanks for your attention!

Website: https://sites.qgoogle.com/view/neurips-2020-tutorial-neurosci/home

Submit questions: https://app.sli.do/event/92gy6nuo
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