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OR

Neurons in the orbitofrontal cortex encode economic 
value. Padoa-Schioppa & Assad. 2006 Nature
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Reward-based training of recurrent neural networks for 
cognitive and value-based tasks. Song et al. 2017 eLife



Task representations in neural networks trained to perform many cognitive tasks. Yang et al. 2019 Nat Neuro

DNNs as models for neuroscience - many tasks 

tSNE embedding



DNNs as models for neuroscience - human behavior

Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models. 
Dezfouli et al. 2018 NeurIPS

● Train RNN to simultaneously predict behavior and neural response data (fMRI)
● Use this model to assess the impact of reward on future actions, pinpointing 

specific brain regions involved in decision-making in this task



Deep meta-reinforcement learning

● Use an LSTM to meta-learn a reinforcement learning algorithm
● Train on a distribution of related tasks
● Learns to quickly adapts to new tasks 

Inner loop

Outer loop

Distribution of
environments

Environment

Last action

Action

𝜽
Observation,

reward

Training signal 
(RPE)

agent 

Prefrontal cortex as a meta-reinforcement learning system. Wang et al, 2018, Nat Neurosci
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A pallidus-habenula-dopamine pathway signals inferred stimulus values. Bromberg-Martin et al.,  J Neurophys, 2010 

Dopamine reward prediction errors (RPEs) reflect indirect, inferred value
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Reward prediction error signal reflects model-based inference

Wang et al, 2018, Nat Neurosci



Distributional reinforcement learning

A distributional code for value in dopamine-based reinforcement learning. Dabney et al. 2020 Nature
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A distributional code for value in dopamine-based reinforcement learning. Dabney et al. 2020 Nature
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Biological neural networksDeep neural networks

★ Continuous time

★ Spiking, stochastic

★ Associative (Hebbian) / local 
learning

★ No backpropagation!

★ Discrete time

★ Continuous activations

★ “Supervised” / global loss 
signal

★ Backpropagation for 
optimization

Moving towards biological realism



Backpropagation and the brain. Lillicrap et al. 2020 Nature Rev Neurosci

Moving towards biological realism



Deep learning without weight transport. Akrout et al. 2019 NeurIPS

Moving towards biological realism

ResNet-50

Weight Mirror network



● Biologically plausible implementation of (continuous time) RNN trained to 
perform multiple cognitive tasks

○ Reward-modulated Hebbian variant of node perturbation
○ No backprop required

Biologically realistic implementation of RNNs. Miconi. 2017, eLife

Moving towards biological realism



Miconi. 2017, eLifeMante et al. 2013 Nature
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● Learning with spiking neural networks
● Sequential MNIST task

Long short-term memory and learning-to-learn in networks of spiking neurons. Bellec et al. 2018 NeurIPS
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● Learning to learn from reward with spiking neural networks
● Morris water maze task

Moving towards biological realism

Long short-term memory and learning-to-learn in networks of spiking neurons. Bellec et al. 2018 NeurIPS
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Why move toward biological realism?

● To get out of local optimums

● To try to emulate what the brain and biology 
does best: solve problems under uncertainty, 
finite computation, decomposable situations, 
and structured environments

● To be able to solve more real-world problems

● To get additional clues about what problems 
biology is trying to solve



Artificial models of embodied control

Deep neuroethology of a virtual rodent. Merel et al. 2020 ICLR



Artificial models of embodied control

Deep neuroethology of a virtual rodent. Merel et al. 2020 ICLR

http://www.youtube.com/watch?v=vBIV1qJpJK8


Understanding DNNs the way we understand brains

Recorded 
activations



Understanding DNNs the way we understand brains

1. “Visualizing and understanding atari agents.” Greydanus et al, 2018 ICML 

2. “Analyzing biological and artificial neural networks: challenges with opportunities for synergy?” Barrett 
et al. 2019 Curr Opin Neurobiol 

3. “On the importance of single directions for generalization.” Morcos et al, 2018 ICLR 

4. “Svcca: Singular vector canonical correlation analysis for deep learning dynamics and interpretability.” 
Raghu et al, 2017 NeurIPS 

5. “Explain Your Move: Understanding Agent Actions Using Specific and Relevant Feature Attribution.” 
Gupta et al. 2020 ICLR 

6. “Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks.” 
Sussillo et al, 2013 

7. “Universality and individuality in neural dynamics across large populations of recurrent networks.” 
Maheswaranathan et al, 2019 NeurIPS 
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Website: https://sites.google.com/view/neurips-2020-tutorial-neurosci/home

Submit questions: https://app.sli.do/event/92gy6nuo

Thanks for your attention!
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