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Do we know in circuit-level detail how brain
implements at least one ML algorithm?
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Do we know in circuit-level detail how brain
implements at least one ML algorithm?

Yes: RL (or atleast a simple instance)



Circuit-level understand of RL
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A hypothesis for basal ganglia-dependent
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Circuit-level understand of RL
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Circuit-level understand of RL

Deep synapse-level circuit
reconstructions validate
predictions of this theory

HVC

) .

MSN

An anatomical substrate of credit assignment in reinforcement
learning

@j Kornfeld, M Januszewski, P Schubert,V Jain,W Denk, MS Fee




RL in the (songbird) brain does not use

Noise burst

Strobe light

o \+ o

Song-related
reinforcement

Place-related
reinforcement

signal signal
l+ vt
Vocal motor Navigation
system system
v v
Song syllable Place
selection preference

one monolithic reward

Spatially segregated circuits see distinct reinforcers

Reinforcers are internally-generated
(e.g. based on comparison to stored tutor song template)

Place preference and vocal learning rely on
distinct reinforcers in songbirds

Don Murdoch, Ruidong Chen & Jesse H. Goldberg



What about in mammals?
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Various neural pathways such as the acetylcholine system
could support something like multiple cost or reward
functions applied to different sub-circuits.

4
N A Cholinergic Mechanism for Reward Timing within Primary Visual
| Cortex

i Alexander A. Chubykin3, Emma B. Roach3, Mark F. Bea‘j. Marshall G. Hussain Shulerf4 =
L

3 These authors contributed equally to this work

‘Nucleus basalis-enabled stimulus-specific plasticity in the

:visual cortex is mediated by astrocytes (i.e., glia not neurons)

A 1 b
Naiyan Chen™ , Hiroki Sugiharaa’ , Jitendra Sharma® , Gertrudis Pereaa, Jeremy Petravicza, Chuong Lea,

2.
and Mriganka sur™

The Input-Output Relationship of the Cholinergic Basal

afferent lateral central caudate somato- .
Forebrain

labeling septum amygdala putamen sensory
cortex Matthew R. Gielow and Laszlo Zaborszky.




What about in mammals?

Complex cortical networks feeding into something like a “value function”?
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Do we know in circuit-level detail how brain
implements a multi-layer credit assighnment
mechanism of similar power to backprop?



Do we know in circuit-level detail how brain
implements a multi-layer credit assighnment
mechanism of similar power to backprop?

Trick question: not sure it does at all



Do we know in circuit-level detail how brain
implements a multi-layer credit assighnment
mechanism of similar power to backprop?

Trick question: but there are ideas...



Idea:

Use multiple dendritic compartments to store both “activations” and “errors™

soma voltage ~ activation
dendritic voltage ~ error derivative
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KONRAD P. KORDING AND PETER KONIG
Institute of Neuroinformatics, ETHIUNI Ziirich, Winterthurerstr. 190, 8057 Ziirich, Switzerland

Supervised and Unsupervised Learning with Two Sites
of Synaptic Integration

Deep learning with segregated dendrites

Jordan Guergiuev'?, Timothy P. Lillicrap*, Blake A. Richards'2:3:"

' Somato-dendritic Synaptic Plasticity and Error-
| backpropagation in Active Dendrites

Mathieu Schiess [B], Robert Urbanczik [E), Walter Senn &
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Table 1. Comparison of Models

Control signal Required Required Not required Not required
Connectivity Unconstrained Unconstrained Constrained Constrained
Properties® o
Propagation time L-1 L-1 2L-1 L-1
Pre-training Not required Not required Not required Required
Error encoded in Difference in activity Rate of change of Activity of specialised Apical dendrites of
between separate activity neurons pyramidal neurons
phases
Data accounted for Neural responses Typical spike-time- Increased neural Properties of
and behaviour in a dependent plasticity activity to pyramidal neurons
variety of tasks unpredicted stimuli
MNIST performance® ~2-3 - ~1.7 ~1.96
Review
Theories of Error Back-Propagation in
the Brain

James C.R. Whittington'2 and Rafal Bogacz'*



Can such ideas be validated?

— Ensemble 1
— Ensemble 2
— Indirect cells
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Clever experimental design with
“brain computer interface”
experiment in animals might allow
us to tease out credit assignment
mechanisms from movies of
neurons firing (calcium imaging)

Rewards are made contingent on
the firing of particular neurons on
the circuit

Volitional modulation of optically
recorded calcium signals during
neuroprosthetic learning

Kelly B Clancy'”7, Aaron C Koralek?’, Rui M Costa3,
Daniel E Feldman?* & Jose M Carmena2>%




In other interpretations, cortical
circuit architecture is determined
more by the need for complex
inference (e.g., as in message
passing algorithms for graphical
masa \ e/ o models of particular structures)

Rather than by the need for

= weight transport for deep
R e learning-like multilayer credit
G assignment

A detailed mathematical theory of thalamic and cortical

microcircuits based on inference in a generative vision model

Dileep George, (2 Miguel Lazaro-Gredilla, Wolfgang Lehrach, Antoine Dedieu,
Guangyao Zhou



Other interpretations of cortical circuit
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In yet other interpretations,
cortical circuits reflect
energy-based models that
incorporate both top-down prior
information and bottom-up
sensory information into the
energy function

Such models are meant to explain
perceptual phenomenain a
“perception as inference”
framework

Theory of cortical function

David J. Heeger



Content-addressable memory in brain
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The hippocampus looks like a
content-addressable memory
system taking input from many
higher cortical areas

Pattern separation (dentate
gyrus), pattern completion (CA3),
and reconstruction (CAT1)

Not just for spatial navigation...

A Theory of Hippocampal Function in Memory
Edmund T. Rolls



Content-addressable memory in brain

Abstract

Neuronal circuits produce self-sustaining sequences of activity patterns, but To a degree one can even see

the precise mechanisms remain unknown. Here we provide evidence for “pattern completion” happening in
autoassociative dynamics in sequence generation. During sharp-wave ripple activity recordings...

(SWR) events, hippocampal neurons express sequenced reactivations, which
we show are composed of discrete attractors. Each attractor corresponds to a
single location, the representation of which sharpens over the course of several

Basins of Attracﬂ'on

milliseconds, as the reactivation focuses at that location. Subsequently, the < (,/‘ \

. . i . . . . . . /\#"\—r/ Trajectories
reactivation transitions rapidly to a spatially discontiguous location. This /‘ ¥ /,
alternation between sharpening and transition occurs repeatedly within \

individual SWRs and is locked to the slow-gamma (25 to 50 hertz) rhythm.
These findings support theoretical notions of neural network function and
reveal a fundamental discretization in the retrieval of memory in the " .
hippocampus, together with a function for gamma oscillations in the control of \\\,f

attractor dynamics. Attractors

Autoassociative dynamics in the generation of
sequences of hippocampal place cells

http://staff.itee.ug.edu.au/janetw/cmc/chapters/Hopfield/ Brad E. Pfeiffer”, David J. Foster!




Content-addressable memory in brain
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Imprinting and Recalling Cortical Ensembles

Luis Carrillo-Reid, Weijian Yang, Yuki Bando, Darcy S. Peterka, and
Rafael Yuste




Using such mechanisms for symbolic processing?
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A Model for Structured Information
Representation in Neural Networks of the Brain

Michael G. Mdiller, Christos H. Papadimitriou, Wolfgang Maass, and Robert Legenstein



Looking to the future: better circuit level data
IARPA MICRONS (2015-2020) TmmA3 scale circuits (mouse brain ~500 mmA3, human ~500,000 mmA3)

MICrONS will combine neuroscience and data science to advance machine learning by uncovering how the

cortex performs computations at the mesoscale
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Looking to the future: better circuit level data

Visualizing differences in brain volume scale (if 1,000 cubic microns is proportional to 1cm)

Caenorhabditis elegans

Brain volume:

5x10* cubic microns
Equivalent length:
50 cm

/ Average airline seat width ~50 cm \
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Drosophila melanogaster

Brain volume:
5x107 cubic microns

Equivalent length:
500 m

~2020
Connectome

C Mus musculus

Brain volume:
5x10"" cubic microns

Equivalent length:
5000 km
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The Mind of a Mouse ~2025-20307?

Larry F. Abbott !, Davi D. Bock 2, Edward M. Callaway 3, Winfried Denk # 2%, Catherine Dulac
5, Adrienne L. Fairhall ®, Ila Fiete 7, Kristen M. Harris 8, Moritz Helmstaedter °, Viren Jain 1%
25 2%, Narayanan Kasthuri %, Yann LeCun 12, Jeff W. Lichtman 13 2> & X, Peter B.
Littlewood 14, Liqun Luo 15 John H.R. Maunsell ¢, R. Clay Reid 17,25 Bruce R. Rosen 18 ...

David C. Van Essen 2




Take-home messages: circuits part

Some algorithms being used in ML (and we've only covered a subset here) have biologically plausible
hypothesized mappings onto neural circuits, but much remains to be understood and validated

For some ML concepts, like reinforcement learning or pattern completion, there are detailed mapping to
particular types and circuits of cells in the brains of birds or mammals

There are many basic things we still don't know, like how uniform the cortex is, whether some approximation
of backprop is used by the brain, how the brain represents probabilities or does something like Bayesian
inference, whether it uses symbolic mechanisms, and so on

Technologies have scaled activity recording from a handful of cells to thousands and can start to be more
useful to address these issues, while connectomics has scaled to the level of a fly brain and there is a major
push to scale it to a mammal brain

Still early days, but we see hints that circuit neuroscience can inform Al more deeply in next 10-15 years...



